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"The fundamental and well-known theorem for the existence of a price 

index that is invariant under change in level of living is that each dollar 

of income be spent in the same way by rich or poor, with all income 

elasticities exactly unity (the homothetic case). Otherwise, a price 

change in luxuries could affect only the price index of the rich while 

leaving that of the poor relatively unchanged. This basic theorem was 

well known already in the 1930's, but is often forgotten and is 

repeatedly being rediscovered". 

"*…+ Although most attention in the literature is devoted to price 

indexes, when you analize the use to which price indexes are generally 

put, you realize that quantity indexes are actually most important. Once 

somehow estimated, price indexes are in fact used, if at all, primarily to 

'deflate' nominal or monetary totals in order to arrive at estimates of 

underlying 'real magnitudes' (which is to say, quantity indexes!)". 

"*…+ The fundamental point about an economic quantity index, which is 

too little stressed by writers, Leontief and Afriat being exceptions, is that 

it must itself be a cardinal indicator of ordinal utility". 

                           P.A. Samuelson and S. Swamy (1974, pp. 567-568) 

 

Introduction  

The index-number problem is typically a problem of aggregation of changes in heterogeneous 

elements. Mathematically, it consists in reducing the relative change of the elements of a 

vector into changes in one single numerical value, a scalar. In his famous Econometrica survey 

of general economic theory dedicated to the problem of index numbers, Ragnar Frisch (1936, 

p. 1) described it in these terms: “The index-number problem arises whenever we want a 
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quantitative expression for a complex that is made up of individual measurements for which 

non common physical unit exists. The desire to unite such measurements and the fact that 

this cannot be done by using physical or technical principles of comparison only, constitute 

the essence of the index-number problem and all the difficulties center here”.  In economics, 

the solution of this problem is necessary in every decomposition of changes of total nominal 

values into meaningful aggregate price and quantity components. 

The national accountants are asked to provide a split of the changes of nominal 

economic aggregates into a deflator and a volume component. Similarly, monitoring 

monetary policies usually entails a decomposition of the index of money supply into an 

inflation index and a volume representing the purchasing power of circulating money. At firm 

level, changes in nominal profits can be accounted for by decomposing them into a 

productivity component (a volume index) and market price conditions (a deflator or price 

index).  It turns out that this is possible only under very restrictive conditions. In the general 

case, every attempt of forcing the application of index number formulas is doomed to yield 

misleading results (see, e.g., McCusker, 2001, Derks, 2004, Officer and Williamson, 2006 on 

intertemporal comparisons of the purchasing power of money and Leontief, 1936 and 

Samuelson, 1947, p. 162, who warned us against “the tendency to attach significance to the 

numerical value of the index computed”).  

Even when the aggregation conditions are not rejected on the basis of the observed 

data, there still remains a certain degree of uncertainty regarding the point estimate of the 

index number. Following the truly constructive method established by Afriat (1981), we can 

bypass this uncertainty by reverting the problem and asking: (i) whether the available data 

can be rationalized by well-behaved “true” index functions, (ii) if yes, what are the upper and 

lower bounds of the region containing the numerical values of possible index functions? (iii) if 

the data cannot be rationalized by well behaved index functions, then either the data are not 

generated by a rational behaviour (and a correction for inefficiency may be attempted), or 

else the data are generated within a different set of variables to be considered in an 

alternative or extended accounting framework.  

Since well-behaved “true” index functions respect, by construction, all Fisher’s tests 

(see Samuelson and Swamy, 1974), also the reconstructed upper and lower bounds of the set 

of possible values of the “true” index respect those tests, and so does a geometric mean of 

those bounds, which may be required for practical needs of point estimation. This solution is 
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purely constructive and is obtainable irrespective of the actual existence or non-existence of 

the underlying utility of production functions.   

 The purpose of this paper is to present a solution of the index number problem in the 

perspective of the theoretical developments occurred during the last century. It represents a 

further step forward with respect to Afriat’s (1981)(2005) method used in Afriat and Milana 

(2009) with the definition of appropriate consistent tight bounds of the “true” index number. 

Further references to the current state of the theory and applications of index numbers can 

be found in Vogt and Barta (1997), von der Lippe (2001)(2007), Balk (2008), and the manuals 

on consumer price indices (CPIs), producer price indices (PPIs), and import-export price 

indices (XMPIs) published jointly by ILO, IMF, OECD, UN, Eurostat, and The World Bank 

(2004a)(2004b)(2008). Although, for brevity reasons, we shall concentrate mainly on the price 

index, important implications for the quantity index will be also considered.            

     

Irving Fisher and the “ideal” index number formula 

 

In Fisher's (1911) book The Purchasing Power of Money. Its Determination to Credit, Interest 

and Crisis, the theory of the price level was related to the quantity theory of money. Let M = 

stock of money, V = the velocity of circulation of money; pi = price level of the ith transaction, 

Ti = volume of the ith transaction carried out using money. The starting (infamous) equation 

of exchange is  

(1)                                         MV = p1T1+ p2T2+…+ pnTn,  

  

In order to make the foregoing equation workable, the following version is usually considered 
 
(2)                                                      MV = PT 

 

where P is the  aggregate price level and T is the volume of all transactions, which have been 

replaced with the aggregation Q of real outputs 1 2, ,..., nq q q , often measured by real GDP, 

that is  MV = PQ (see Fisher, 1911, Ch. 2).  Equation (1) does not necessarily imply equation 

(2).  While the former is in principle based on observable variables, the latter contains non-

observable aggregates and relies on computation techniques in order to “correctly” construct 

them. It is in this vein that Irving Fisher dedicated energies and efforts in the search of his 

“ideal” index number formula satisfying as many desired properties as possible. This search 

culminated in his famous book The Making of Index Numbers published in 1922 (3rd edition 

http://en.wikipedia.org/wiki/Quantity_theory_of_money
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1927), where he recognized that no index number would satisfy all the desired properties, but 

he chose the geometric mean of the Laspeyres and Paasche indices as his “ideal” index 

number formula.  Applied to the price index between the points of observation 0 and 1, this 

“ideal” index number is given by 

(3) 0,1 0,1 0,1
F L PP P P     where 

1 0 1 0
0,1

0 0 0 0

i ii
L

i ii

p q
P

p q
 



p q

p q
 and 

1 1 1 1
0,1

0 1 0 1

i ii
P

i ii

p q
P

p q
 



p q

p q
 

where 1 2[ ... ]t t t t
np p pp  and 1 2[ ... ]t t t t

nq q qq  are the price and quantity vectors and, 0,1
LP  , 0,1

PP  , and 

0,1
FP  are the Laspeyres, Paasche, and Fisher’s “ideal” price indices. This formula had been 

previously considered by Bowley and others before 1899 (see Bowley, 1923, p. 252) and 

recommended by Walsh and Pigou, although it does not generally satisfy the transitivity or 

circularity property, that is 0,2 0,1 1,2
F F FP P P   (whereas, any ratio of aggregate price levels, if 

any, is transitive by construction: P
2
/P

0
 = (P

2
/P

1
)(P

1
/P

0
)).  Surprisingly, Fisher dropped the 

requirement of this property and deemed it as unimportant compared to other properties 

which his “ideal” formula always satisfies.  

In their article dedicated to economic index numbers, Samuelson and Swamy (1974) 

commented Fisher’s choice in these terms: “Indeed, so enamoured did Fisher become with 

his so-called Ideal index that, when he discovered it failed the circularity test, he had the 

hubris to declare ‘…, therefore, a perfect fulfilment of this so-called circular test should really 

be taken as proof that the formula which fulfils it is erroneous’ (1922, p. 271). Alas, Homer 

has nodded; or, more accurately, a great scholar has been detoured on a trip whose purpose 

was obscure from the beginning” (p. 575).  By contrast, in order to avoid strong discrepancies 

in the results obtained, the subsequent developments in this field have been devoted to 

satisfy, among the other tests, the transitivity property in multilateral comparisons.  

 

Constant-utility index numbers  

 
Bennet (1920) introduced a method “by which a change of expenditure can be analysed into 

two parts, one corresponding to changes in cost of living and the other to changes in standard 

of living” (p. 455). This decomposition was proposed in terms of absolute differences. Konüs 

(1924) and Allen (1949) have, respectively, introduced the concepts of constant-utility indexes 
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of prices and quantities in terms of ratios.  Konüs price index is defined as 
1 1

0 0

( , )
,

( , )
K

u
P

u


p q p

p q p
 

which takes into account the price-induced adjustments in quantities for a given level of 

utility u .                  

Setting 0u u  yields the Laspeyres-type Konüs price index  
1 1 0

0

0 0

( , )
,K

u
P 

p q p

p q
  where 

0 0 0 0 0( , ),up q p q p  while setting 1u u  yields the Paasche-type Konüs price index  
1 1

1

0 0 1
,

( , )
KP

u


p q

p q p
  where  1 1 1 1 1( , ).up q p q p   

It must be noted that the constant-utility index numbers 0
KP  and 1

KP  cannot be 

computed directly since the respective compensated expenditures 1 1 0( , )up q p  and 0 0 1( , )up q p  

cannot be usually observed. Unless the demand functions 0( , )uq p  and 1( , )uq p  are somehow 

estimated and simulated with prices 1
p  and 0

p respectively (as in the econometric approach), 

a way to proceed with the concept of Konüs’ constant-utility index numbers is to establish  

their (upper and lower) limits, when possible. In the general (non-homothetic) case, Konüs 

had established the following one-sided bounds with the price index from the point of view of 

demand (on the supply side, the algebraic signs are reversed)    

1 0
0

0 0K LP P 
p q

p q
         and         

1 1
1

0 1P KP P 
p q

p q
 

since   1 1 0 1 0( , )u p q p p q  and  0 0 1 0 0( , )u p q p p q , because the left-hand sides of these last 

inequalities are those actually consistent with a cost-miminizing behaviour at the prices p
1 

and p0 respectively.  

Konüs (1924) also considered various situations in relation to the ranking between the 

Laspeyres and Paasche indices. In summary, from the point of view of demand, the following 

alternative cases are possible: 

 

Case 1:   Laspeyres < Paasche  

0 1
K L P KP P P P    

Case 2: Laspeyres ˃ Paasche 

 
1

P K LP P P   
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or                                                                     1
P L KP P P   

 
and 

0
P K LP P P   

                                                                

or                                                                     0
K P LP P P   

                                                                
Konüs observed that it is always possible to find a reference utility level, say *u ,  such that 

the cost of living index falls between the Laspeyres and Paasche indexes, that is  

                   *
P K LP P P     in case 1 

or                                                                      *
P K LP P P      in case 2. 

Konus claimed that these results would suggest that we can work with the Laspeyres and 

Paasche bounds and take an average of the two to approximate the “true” price index.   

Allen (1949) observed that the economic (utility-constant) quantity index could be 

obtained directly, for given reference prices ,p  as  

  
1

0

( , )

( , )
A

u
Q

u






p q p

p q p
 

Setting 0p p   yields the Laspeyres-type  “true” Allen quantity index 
0 0 1

0

0 0

( , )
,A

u
Q 

p q p

p q
  where 

0 0 0 0 0( , ),up q p q p  and setting 1p p  yields the Paasche-type “true” Allen quantity index 

1 1
1

1 1 0
,

( , )
AQ

u


p q

p q p
   where  1 1 1 1 0( , ).up q p q p   

The Laspeyres- and Paasche-type “true” Allen quantity index numbers can also be 

obtained by deflating the nominal income ratio between the two observation points by the 

Paasche- and Laspeyres-type “true” Konüs price index numbers, that is: 

0 0 1 1 1 1 1 1 1
0 1

0 0 0 0 0 0 1 0 0

( , )
/ /

( , )
A K

u
Q P

u
  

p q p p q p q p q

p q p q p q p p q
 

1 1 1 1 1 1 0 1 1
1 0

1 1 0 0 0 0 0 0 0

( , )
/ /

( , )
A K

u
Q P

u
  

p q p q p q p p q

p q p p q p q p q
 

The theory of bounds with respect to the quantity index numbers is similar to that of the price 

index numbers. Following Konüs’ suggestion, any point of the numerical interval between 

these two index numbers could correspond to the “true” quantity index with a certain level of 

relative prices.  
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The indeterminacy of the numerical value of “true” index within the Laspeyres-

Paasche bounds seemed to be eliminated by another finding that is described in the following 

section. 

 

“Exact” and “superlative” index numbers 

 
Byushgens (1924) and Konüs and Byushgens (1926) have introduced the concept of “exact” 

index numbers for the true aggregator function by showing that the Fisher “ideal” index 

formula (the geometric mean of the Laspeyres and Paasche index numbers) may yield the 

same numerical value of the ratios of values taken by a quadratic aggregator function. If the 

observed data were generated by a demand governed by such function, then the transitivity o 

circularity property would be satisfied by Fisher “ideal” index formula. Following the modern 

generalization of their proposition, let us assume a utility function such that the 

corresponding minimum expenditure function has the quadratic mean-of-order-r functional 

form ( , ) ( , )rQ
C u c u u p p , where / 2 / 2 1/( , ) ( ( ) )r

r r r

Q
c u up p A p  with 0,  0 <  r r   , and the 

matrix ( )uA  is a normalized symmetric matrix of positive coefficients ( ) ( )ij jia u a u satisfying  

the restriction ( ) 1iji j
a u   , so that ( , ) 1rQ

c u p  if [11...1].p     

   The functional form  rQ
c  can be seen as a generalization of a CES functional form, to 

which it collapses if all 0ija   for i j (see McCarthy, 1967 and Kadiyala, 1972), and it reduces 

to the Generalized Leontief functional form with 1r   (Denny, 1972, 1974)  and the Konüs-

Byushgens (1926) functional form with 2r   (Diewert, 1976, p. 130). Since the quadratic 

functional forms can be seen also as second-order approximations to any arbitrary functional 

form, they have been called “flexible” by Diewert (1976).  

We have, in fact, 

 (4)                                               
 

 

1/
/ 2 / 2

1 1 11 1

1/
/ 2 / 2

0 0 0 0 0

( )( , )

( , ) ( )

r

r

r
r r

Q

r
r r

Q

uc u

c u u


p A pp

p p A p

    

1/ 1/
/ 2 / 2 / 2 / 2 / 2 / 2

1 1 1 1 0 0 0 1 1

/ 2 / 2 / 2 / 2 / 2 / 2
0 1 1 0 0 0 0 0 1

( ) ( ) ( )

( ) ( ) ( )

r r
r r r r r r

r r r r r r

u u u

u u u

   
     
   

p A p p A p p A p

p A p p A p p A p
   since  / 2 / 2 / 2 / 2

1 0 0 1( ) ( )r r r r
t tu up A p p A p  

with a symmetric ( )tA u   

1/ 1/
/ 2 / 2 / 2 1 / 2 / 2 1 / 2 / 2 / 2

1 1 1 1 0 0 0 0 0 1 1

/ 2 1 / 2 / 2 1 / 2 / 2 / 2 / 2 / 2
0 1 1 1 1 0 0 0 0 0 1

ˆ ˆ( ) ( ) ( )

ˆ ˆ ( ) ( ) ( )

r r
r r r r r r r r

r r r r r r r r

u u u

u u u

 

 

   
     
   

p A p p p p A p p A p

p p p A p p A p p A p
 



8 
 

where  ^  denotes a diagonal matrix formed with the elements of a vector 

1
/ 2

1
1/0 / 2 / 2/ 2

0 1 10

/ 2 / 2 / 2
0 0 0 1

1/ 2
1

( )

( )

r r
i

ri r rri
i

r r r

iri

p
s

up

p u
s

p

 
   
    
   
 
 





p A p

p A p

 

where 

/ 2 / 2

/ 2 / 2

( )

( )

r r
ti ij t tjjti ti

ti r r
tj tj t t tj

p a u pp q
s

p q u
 


 p A p

, which is the observed value share of the ith quantity  

1
/ 22

1
1

/ 2 / 2

( )( , )
( , ) /

( ( ) )

r

r
ti ij t tjjt t

ti t t ti t t

ti r r r
t t t

p a u pc u
q C u p u u

p
u






      



p
p

p A p

 by Shephard’s lemma, with ija  being the 

(i,j) element of matrix A.  Thus, the index number yields exactly (is “exact” for) the same 

numerical value that would be obtained as a ratio of the values of the underlying function in the 

two compared situations. Diewert (1976) called “superlative” the index numbers that are exact 

for flexible functional forms and described them as approximating each other up to the second 

order. By contrast, it has been noted that these index numbers are far from being second-order 

approximations to each other (see Milana, 2005 and Hill, 2006a) and that this terminology 

diverges in meaning from that used by Fisher (1922), who has defined “superlative” those index 

numbers that simply performed very closely to his “ideal” index formula with his dataset.  

Since all the price variables and utility are considered here at their current levels, the 

shares sti are those actually observed. As we shall see also below, in the homothetic case, we 

have  ( , ) ( )C u c u p p   and, consequently, the observed shares tis  are equal to the theoretical 

weights that are functions only of prices (with 
0 1( ) ( ) ).u u A A A  

The first multiplicative bracketed element of the last line of (4) can be considered as a 

candidate price index number 

(5)                                    

1
/ 2

1
0/ 2

0
0 1 0 1 / 2

0
1/ 2

1

( , , , )r

r r
i

iri
i

Q r

iri

p
s

p
P p p q q

p
s

p

 
 
 
 
 
 





    

                                                                               
which corresponds to Diewert’s (1976, p.131)  quadratic mean-of-order-r price index number.  

As r tends to 0, the price index rQ
P tends to the Törnqvist index number: 

(6)                              
0 0 1 1 0

1
lim exp[ ( )(ln ln )]

2
rr T i i i iQ i

P P s s p p      

which is exact for the translog cost function  
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(7)         
0

1
( , ) exp( ln ln ln ln ln ln )

2
T u i i iu i ij i ji i i j

c p u u u p p u p p                  

If  r = 2, then the price index rQ
P is to the “ideal” Fisher index. 

We note that, if the observed data were generated by a demand consistent with a 

minimum quadratic cost function  ( , )rQ
c up  with specific parameters values, at least locally, 

then we would have 0 2 0 2 0 1 0 1 1 2 1 2( , , , ) ( , , , ) ( , , , ),r r rQ Q Q
P p p q q P p p q q P p p q q    that is the exact index 

number rQ
P  would satisfy the transitivity property as well as all the other Fisher’s tests between 

the three observation points. If the transitivity property is not satisfied, then either the demand 

is not governed by a rational behaviour or the index number formula is not exact for the actual 

cost function or utility function consistent with the data.  

At time of the “discovery” of Konüs and Byushgens (1926), the concept of homotheticity 

of indifference curves and its relationship with existence of a pure price (and quantity) index 

was not widely known. The concept of homotheticity was explicitly spelled out by Shephard 

(1953) and Malmquist (1953) in the field of production technology and independently by Afriat 

(1972) under the terminology of “conical functions” in the field of consumer utility. Earlier 

contributions dating back at least from Antonelli (1886) and including Frisch (1936, p. 25) and 

Samuelson (1950, p. 24) have dealt with it implicitly.  

When the “true” price index defined by Konüs is not independent of the utility level, as 

in the general non-homothetic case, the corresponding Allen “true” quantity index fails to be 

linearly homogeneous (if all the elementary quantities are multiplied by a factor λ, then the 

index number fails to be proportional by the same factor λ). In Allen’s (1949, p. 199) words, 

“*t+he index has no meaning unless we make the assumption that the preference map is the 

same in the two situations”. This affects, in a way, also the price index: although this index is 

always linearly homogeneous by construction in the non-homothetic case it results to be a 

spurious price index whose weights are functions not only of prices but also of the utility level 

and, then, of the demanded relative quantities. This has been usually overlooked also in the 

current literature on economic index numbers.  

With the quadratic function considered above, only if 1 0( ) ( )A u A u A   would the 

weights be functions only of prices.  In the application of indexes defined by Divisia (1925), this 

is called “path independence” since the index is independent of the path taken with respect to 

the reference quantity variables. Hulten (1973) has shown that the Divisia index is path-



10 
 

independent if and only if the underlying function is homothetic (tastes do not change). This 

can be seen immediately related to the Törnqvist index number in the limit of infinitesimal 

changes:  

(8)                  ( )
0 ( )

ln ln ln1
ln lim ( )

2

t t i ti ti
Div t ti t t i tii i

p p d p
d P s s s

t dt


  

 
    

 
     

hence 

(9)                                                     
10,1

0

ln
exp( )

t
ti

Div tiit

d p
P s dt

dt




                                                                                                      

which is the Divisia price index.  If the weights tis  are not functions of the prices alone (as in the 

homothetic case), but depend also on relative levels of the reference quantities, then the 

Divisia price index is not a “pure” price index.   

These considerations were already implicit in the analysis of contributors in the early 

part of last century, who were well aware of the importance of homothetic tastes for the 

existence of economic aggregate index numbers. A. L. Bowley, for example, in search of a 

constant-utility price index had been among the first proponent of the geometric mean of the 

Laspeyres and Paasche indexes (which had later become famous as Fisher “ideal” index). He 

also devised another index as an approximation to the constant-utility price index given by the 

following formula, previously proposed by Edgeworth: 

(10)                                                  
1 0 1

0 0 1

( )

( )
EP






p q q

p q q
                                                                                                 

to be applied under the hypothesis of no changes in tastes. He, in fact, wrote: “Assume that our 

records represent the expenditure of an average man, and that the satisfaction he derives from 

his purchases is a function of the quantities bought only, say u(q), are the numbers of units 

bought of the n commodities. Further, suppose that the form and constants of this function are 

unchanged over the period considered. The last condition limits the measurement to an interval 

of time in which customs and desires have not changed and to a not very wide range of real 

income. The analysis and conclusions do not apply to comparisons between citizens of two 

countries, nor over, say, 60 years in one country” (Bowley, 1928, pp. 223-224). 

Identical preferences, implying a homothetic utility function, have been noted as early 

as the work of Antonelli (1886) as a necessary and sufficient condition for aggregation. 

Conditions for aggregation holding only locally and allowing global preference heterogeneity 

have been studied by Afriat (1953-56)(1959) and Gorman (1953)(1961).    
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It is remarkable, however, that also the foregoing Bowley-Edgeworth index number 

does not satisfy the requirement of transitivity. In general, the lack of transitivity would signal 

the poor approximation given by the formulas chosen. This is the situation encountered 

particularly in interspatial comparisons, where the alternative measures could differ more 

than 100% even with “superlative” index numbers (see, e.g., Hill, 2006a, 2006b).   Given the 

discouraging results obtained with specific index number formulas, we now turn to the 

method of limits by considering the exercise of testing the data for consistency with 

hypothetical homothetic changes, following Keynes, Hicks, Samuelson, and Afriat.  

 

John Maynard Keynes’ “method of limits” 

 
In his Treatise on Money, Keynes (1930, Vol.I, ch. 8) made no explicit reference to the idea of 

a price index. Rather, he compared the purchasing power of money in two situations of 

consumption differing in relative prices. The comparison was made by using the so-called 

“method of limits” (p. 98). No change in taste and proportionality of composite quantities 

(and prices) with respect to total real expenditure are assumed. These hypotheses imply 

monotonicity along a beam line where, at given relative prices, all individual quantities 

change proportionally. Two alternative ratios of real expenditures can be calculated at 

constant relative prices of the base and the current situations, respectively. It turns out that 

these ratios are the upper and lower limits (bounds) of the index of the real expenditure. (As 

shown by Leontief, 1936, pp. 46-47 and Afriat, 1977, pp. 108-115, 2005, these limits 

correspond, respectively, to the Laspeyres and Paasche  index numbers of real expenditure.) 

Similar methods were used by other authors. In his famous review article, Ragnar Frisch 

(1936, p. 17-27) mentioned Pigou, Haberler, Keynes, Gini, Konüs, Bortkiewicz, Bowley, Allen, 

and Staehle and discussed them briefly. Keynes (1930, p. 99) himself observed: “This 

conclusion is not unfamiliar *…+. It is reached, for example, by Professor Pigou (Economics of 

Welfare, part I, chapter VI). The matter is also very well treated by Harberler (Der Sinn der 

Indexzahlen, pp. 83-94). The dependence of the argument, however, on the assumption of 

uniformity of tastes, etc., is not always sufficiently emphasised” (italics added). He writes, 

here, the following footnote: “Dr. Bowley in his ‘Notes on Index Numbers’ published in the 

Economic Journal, June 1928, may be mentioned amongst those who have expressly 

introduced this necessary condition”. 
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Keynes’ method of limits has not been widely used, probably because it has not been 

immediately understood in its fundamental reasoning.  Frisch (1936, p. 26), for example, 

while conceding the correctness of Keynes’ proof, overlooked the real sense of his proceeding 

by observing: “If we know that q0 and q1 are adapted and equivalent, the indifference-defined 

[price] index can be computed exactly, namely, as the ratio 1 1 0 0/ p q p q  [since it is assumed 

that ( , )t t uq q p  with t = 0,1]. In these circumstances, to derive limits for it is to play hide-

and-seek. It was Staehle who first pointed this out”. In fact, Keynes did not assume that q0 

and q1 were necessarily on the same indifference curve, but on homothetic indifference 

curves on the hypothesis of uniformity of tastes. This implies monotonicity along a beam (a 

line where all individual quantities change proportionately) along which the purchasing power 

of money can be compared at different prices. This reasoning was later recovered and further 

developed by Afriat (1977, pp. 108-115).   

 

Hicks’ Laspeyres-Paasche inequality condition 

 
In a chapter entitled “The Index-Number Theorem” of his Revision of Demand Theory, John 

Hicks (1956, pp. 180-188) established a proposition on the “Laspeyres-Paasche inequality” on 

the demand side 

(11)              Laspeyres (L) ≥ Paasche (P)         (for both price or quantity indexes) 
 

(see also Hicks, 1958 and the previous preliminary analysis contained in Hicks, 1940). The 

(non-negative) difference between Laspeyres and Paasche indicates a substitution effect (S) in 

the case the points of observation are on the indifference curve or the sum of substitution 

effect and a certain income effect (I) in the case they are not on the same indifference curve.  

In the more general case, we have 
 

       (12)                                                   L – P = I + S 

 

where, L and P are the Laspeyres and Paasche indexes (we use Hicks’ original notation 

denoting the Paasche index as P). If the income-elasticities of all commodities are the same 

(that is the preferences are homothetic), then I  is equal to zero. In this case, the proportion 

of demanded quantities do not change as real income changes.  

We have the following possible results:  
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Case 1: L – P < 0 (Hicks’ index-number theorem breaks down) meaning either that 

demand is not governed by rational behaviour and/or the preferences are non-homothetic 

with a negative and strong enough income effect so that real-income change induces a 

relative expansion in demand for those goods whose prices have relatively risen. A strong 

negative income effect offsets a positive substitution effect (I + S  < 0)  

Case 2: L – P ˃ 0 (Hicks’ index-number theorem holds), meaning either that 

preferences are homothetic (so that I = 0 and S ˃ 0) or preferences are non-homothetic (with 

I ≠ 0 and I + S ˃ 0). If preferences are homothetic, implying that the income-elasticities of all 

commodities are the same then the proportion of demanded quantities do not change as real 

income changes. and  I  is equal to zero.  

The Hicks’ index-number theorem pointing to a positive LP difference (case 2) is a 

necessary and sufficient condition for using the observed data on prices and quantities to 

reconstruct “true” index numbers based on hypothetical homothetic preferences. These, 

however, do not necessarily coincide with the actual criteria governing the observed 

behaviour. In other words, the LP inequality might be the result of the concomitant “non-

proportional” effects of real income changes as well as substitution effects under non-

homothetic preferences (if any), but the observed data could always be rationalized by a 

hypothetical homothetic preference field if L – P ˃ 0. Under this condition we could always 

reconstruct “true” price and quantity index numbers that are consistent with those 

homothetic preferences and, as such, always respect all Fisher’s requirement, including 

transitivity. This is, in fact, (as Keynes had recalled) the only condition under which it is 

possible to make such construction.          

 
Samuelson’s considerations on the Laspeyres-Paasche inequality 

 
Independently from Hicks (1956) and consistently with his “index-number theorem”, in their 

surveys on the conclusions of the theory of bounds, Samuelson (1974)(1984), Samuelson and 

Swamy (1974), and Swamy (1984) have considered the following cases.   

Case 1: L – P < 0, so that the observed relative prices are not negatively correlated 

with the observed relative quantities (as expected with homothetic changes). In such an 

anomalous case, we might obtain the following ranking (written in matrix notation, where pt
 

and qt
 are price and quantity vectors at time t): 
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1 1 0 1 0 1 1 1 1

0 0 0 0 0 1 0 0 1

( , )

( , )

u

u
  

p q p p q p q p q

p q p q p q p q p
 

                                              Konüs     Laspeyres  Paasche    Konüs 
      Laspeyres-type                             Paasche-type 
      

with 0 1( , )uq p  and 1 0( , )uq p  being the vectors of non-observed (theoretical) quantities that 

would have been demanded at the price-utility combinations 0 1( , )up and 1 0( , ),up   

respectively.  This is a rather problematic case, where aggregation is not possible. Even 

Fisher’s “ideal” index, which consists in the geometric mean of the Laspeyres and Paasche 

indexes, falling between these two indexes, is farther than this last ones from both “true” 

economic indexes! (See the numerical example given by Samuelson and Swamy, 1974, where 

“the Ideal index cannot give high-powered approximation to the true index in the general, 

nonhomothetic case”, p. 585.)   

Case 2: L – P ˃ 0. If preferences are homothetic, then I = 0 and S ˃ 0. If preferences 

are  non-homothetic with real-income changes inducing a relative expansion in demand for 

those goods whose prices have relatively fallen (a case considered by Samuelson, 1974, 1984, 

Swamy, 1984 and others under the name of “Engel-Gerschenkron effect”), then I  ˃ 0, which 

reinforces the positive substitution effect S ˃ 0. In these two cases, we can rely on the 

following ranking  

         
1 1 1 1 1 0

0 1 0 0 1 0 0( , )u
 

p q p q p q

p q p q p p q
 

        Paasche      Konüs       Laspeyres 
                       Paasche-type     
         
and 

 
1 1 1 1 0 1 0

0 1 0 0 0 0

( , )u
 

p q p q p p q

p q p q p q
 

                                                     Paasche      Konüs      Laspeyres 
                     Laspeyres-type    
 
The Laspeyres and Paasche index numbers correspond to alternative fixed proportions utility 

functions (with zero commodity substitution). Noting this fact, Swamy (1984, fn. 10) wrote: 

“This is not to dissuade scholars from using the Laspeyres and Paasche indexes, but merely to 

urge them to restrict the use of these indexes to local changes in p. These indexes can be 

used to determine bounds for the true index which may not be known”.  
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Afriat’s index formula:  “Any point in the Laspeyres-Paasche interval, if any” 

 
Along the lines open by Hicks (1956), the joint information given by the Laspeyres and 

Paasche indexes could provide us with an alternative information concerning two limiting 

functions allowing substitution effects whose difference is equal to S  ˃ 0 considered above. 

These two limiting functions are piece-wise linear boundaries of a set of possible homothetic 

utility functions, which can rationalize the observed data.  Even though these data have been 

actually generated under non-homothetic preferences, the Hicks’ (1956) Laspeyres-Paasche 

inequality condition is necessary and sufficient for constructing “true” index homothetic 

functions that can also rationalize the same data. It is in this vein that Afriat (1977, pp. 108-

115) recovered Keynes’ (1930) reasoning on the purchasing power of money under the 

hypothesis of unchanged tastes and translated it into the construction of the bounds of a 

“true” price index.  As recalled by Samuelson and Swamy (1974, p. 570), it is possible to 

invoke the “Shephard-Afriat’s factorization theorem” under the hypothesis of homotheticity 

to separate the expenditure function into meaningful aggregates of prices and quantities.  

As Samuelson and Swamy (1974, p. 570) have recognized, “*t+he invariance of the 

price index [from the reference quantity base] is seen to imply and to be implied by the 

invariance of the quantity index from the reference price base”.   This conclusion was 

anticipated in Afriat (1977, pp. 107-112). A pure price index is consistent with a conical 

(homothetic) utility function rationalizing the observed prices and quantities in different 

situations. The conical (homothetic) utility condition which permits this determination, for 

arbitrary 0 1 and ,p p  is a non-observational object, a purely hypothetical “metaphysical” 

concept. The corresponding dual minimum expenditure function admits the factorization into 

a product 

( , ) ( ) ( )C u c u p p q  

                                                
of the price and quantity functions.  Defining the amount of money devoted to total 

expenditure (or income) as E, so that  ( , ),E C u p  we can obtain the cardinal measure of 

utility as a deflated value of income, that is in the homothetic case 

( ) ( )
( , )

( ) ( )

c u E
u V E

c c


  

p q
p

p p
 

where ( , )V Ep  is the indirect utility function.   
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 The observed (uncompensated) Marshallian demand functions for each elementary 

quantity is given by Roy’s identity 

( , ) /

( , ) /

i
i

V E p
q

dV E dE

 
 

p

p
     for  i = 1,2, … 

which, in the homothetic case, becomes 

    ( )i iq a E p        where   
( ) /

( )
( )

i
i

c p
a

c

 


p
p

p
   for all i’s 

The income elasticity of the demanded ith quantity is thus obtained 

1
( ) 1

( )

i
i

i i

q E
a

E q a


   


p

p
         for all i’s 

that is, all income elasticities are equal to 1 in the homothetic case.   

 The problem is whether we can recover the price index  

0,1 1 0/P P P  

which is expressed as a ratio of ‘price levels’ 

0 0 1 1( ),  ( )P c P c p p
 

whereas, the money-metric utility index is measured by  

1 0
0,1 1 0

0,1

/
/

E E
Q Q Q

P
   

which is the ratio of ‘volume levels’ 

0 0 0 1 1 1/ ( ),    / ( )Q E c Q E c p p  

The expenditure index consistent with the recovered homothetic utility con be decomposed 
as follows: 

1 1 1 1 1 1 1
0,1 0,1

0 0 0 0 0 0 0

( , ) ( ) ( ) / ( )

( , ) ( ) ( ) / ( )

C u c u c E c
P Q

C u c u c E c


    



p p p p

p p p p
 

 

Strictly speaking, the inverse of the price index, 0,11/ ,P is the index of “purchasing power” of 

one unit of money and the “quantity” index 0,1 1 0 0,1( / ) (1/ )Q E E P   is the index of purchasing 

power of monetary income, or “real income”. Consistently with the hypothesis of 

homotheticity, this last index corresponds to the index of utility 1 0( ) / ( ).u q u q   

In Afriat (1977, p. 110) words: “The conclusion *…+ is that the price index is bounded by 

the Paasche and Laspeyres indices. *…+ The Paasche index does not exceed the Laspeyers 

index. *…+ The set of values *of the “true index”+ is in any case identical with the Paasche-
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Laspeyres interval. The “true” points are just the points in that interval and no others; and 

none is more true than another. There is no sense to a point in the interval being a better 

approximation to “the true index” than others. There is no proper distinction of ‘constant 

utility’ indices, since all these points have that distinction”. 

    The same conclusion is replicated in Afriat (2005, p. xxiii):  “Let us call the LP interval the 

closed interval with L [Laspeyers index] and P (Paasche index] as upper and lower limits, so 

the LP-inequality is the condition for this to be non-empty. While every true index is 

recognized to belong to this interval, it can still be asked what points in this interval are true? 

The answer is all of them, all equally true, no one more true than another. When I submitted 

this theorem to someone notorious in this subject area it was received with complete 

disbelief. 

“Here is a formula to add to Fisher’s collection, a bit different from the others. 

“Index Formula: Any point in the LP-interval, if any.”  

In my review article (Milana, 2005), it is shown that any price index number that is 

exact for a continuous  function can be translated into the following form 

(13)                  

1
( ) 1 ( )0

1 0 1 10
0,1 1 1

0 0 0 0 1
1

1

(1 )

(1 )

i
i

N Ni i i ii

i i
i i i i i

i

i

p
s

p q p qp
P

p p q p q
s

p

    

 



 

 
   

     
    


 


 

where, for t = 0,1,  
( , ) ( , )

/
t t t t

ti ti tjj
ti tj

C u C u
s p p

p p

 


 


p p
 

            /ti ti tj tjj
p q p q     using Shephard’s lemma ( tiq =

( , )t t

ti

C u

p





p
) 

and   is an appropriate parameter whose numerical value depends on the remainder 

terms of the two first-order approximations of C(p,u) around the base and current points 

of observations.  

The index 0,1P  is linearly homogeneous in p  (that is, if 1 0 ,p p  then 0,1 ).P   With 

,0  it reduces to a Laspeyres index number, whereas, with ,1  it reduces to a Paasche 

index number.   

The “true” exact index number, if any, is numerically equivalent to 0,1P . If the functional 

form of ( , )t tC up  is square root quadratic in ,p  then 0,1P  can be transformed into a Fisher 
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“ideal” index number. In this case, the index 0,1P  is numerically equivalent to a quadratic 

mean-of-order-2 index number.   

Here, again, the price index  is invariant with respect to the reference utility level if and 

only if ( , )C up  is homothetically separable and can be written ( , ) ( )C u c u p p , so that 

                           /ti ti ti tj tjj
s p q p q   ( ) ( )

/ .
t t

ti tjj
ti tj

c c
p p

p p

 


 


p p      

Moreover, 0,1 1 1 0 0 0,1[ ( , ) / ( , )]/Q C u C u P p p   is the quantity index measured implicitly by 

deflating the index of the functional value with the price index 0,1P .  It has the meaning of a 

pure quantity index if and only if 0,1P  is a pure price index.  

The parameter  , however, remains unknown and we cannot rely on the second-order 

differential approximation paradigm. For this reason, it is concluded that “it would be more 

appropriate to construct a range of alternative index numbers (including those that are not 

superlative), which are all equally valid candidates to represent the true index number, rather 

than follow the traditional search for only one optimal formula” (Milana, 2005, p. 44). 

Previous attempts in this direction using non-parametric approaches based on revealed 

preference techniques include Banker and Maindiratta (1988), Manser and McDonald (1988), 

Chavas and Cox (1990)(1997), Dorwick and Quiggin (1994)(1997), but these do not provide, in 

general, stringent tests for homotheticity and, more importantly, the derived index numbers 

fail to satisfy the transitivity requirement.  

An alternative approach to the Afriat methodology would be that of the econometric 

estimation of the function ( )c p in order to eliminate the indeterminacy of the  “true” index 

number (see, among the first attempts, Goldberger and Gamaletsos, 1970 and Lloyd (1975), 

and, among the most recent contributions,  Blundell et al. 2003, Neary, 2004, and Oulton, 

2005), but this implies the imposition of a subjective choice of a priori functional forms where 

stochastic components of the derived demand functions are also included. The theory of 

bounds becomes more complex with the addition of the stochastic term to each demand 

function (see, e.g., Philips, 1983). Critical remarks on this approach could be made regarding 

the non-identifiability of the elasticities of substitution and the bias in changes in technology 

or consumer tastes if no a priori information is available (see, e.g., Diamond, McFadden and 

Rodriguez, 1978).       
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Consistent price indices between several observation points 

  
The approach outlined in the previous section can be enhanced by considering more than two 

observation points simultaneously.  This idea had been advanced during the debate on index 

numbers in the early part of last century. Frisch (1936, p. 36), commenting the “iso-

expenditure method” of Staehle (1935), wrote: “The comparison between two paths will be 

more exact if made via an intermediate path. The closer the individual paths the better. 

Knowing a very close path-system is equivalent to knowing the indifference surfaces 

themselves. In this case the indifference index can be computed exactly”.  Similar statements 

were written also by Samuelson (1947, ch. VI). It is worth quoting Samuelson and Swamy’s 

(1974, p. 476) own words: “*…+ Fisher missed the point made in Samuelson (1947, p. 151) that 

knowledge of a third situation can add information relevant to the comparison of two given 

situations. Thus Fisher contemplates Georgia, Egypt, and Norway, in which the last two each 

have the same price index relative to Georgia : 

“‘We might conclude, since ‘two things equal to the same thing are equal to 
each other,’ that, therefore, the price levels of Egypt and Norway must equal, 
and this would be the case if we compare Egypt and Norway via Georgia. But, 
evidently, if we are intent on getting the very best comparison between Norway 
and Egypt, we shall not go to Georgia for our weights … *which are+, so to speak, 
none of Georgia’s business.’ *1922, p. 272]. 

 

“This simply throws away the transitivity of indifference and has been led astray by Fisher’s 

unwarranted belief that only fixed-weights lead to the circular’s test’s being satisfied (an 

assertion contradicted by our /i jP P  and /i jQ Q  forms.” 

One of Afriat’s main contribution in index number theory has been the development  an 

original approach of constructing aggregating index numbers using all the data simultaneously 

(see Afriat, 1967, 1981, 1984, 2005). He also has developed an efficient algorithm to find the 

minimum path of chained upper limit index numbers (the chained Laspeyres indices on the 

demand side). In the following section this algorithm is briefly described. From these chained 

upper limit index numbers can be derived directly the chained lower limit index numbers  (the 

chained Paasche indices on the demand side).  
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The proposed method  

In this section, for expositional convenience, some notation is changed with respect to the 

previous sections. The matrices of bilateral Laspeyres (L) and Paasche (K) index numbers 

comparing aggregate prices at the point of observation i relative to those at point j,  for i,j =1, 

2, …, N,  are respectively 

 

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

N

N

N N NN

L L L

L L L

L L L

 
 
 
 
 
 

L      and   

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

N

N

N N NN

K K K

K K K

K K K

 
 
 
 
 
 

K

 
 

where 
i j

ij j j
L 

p q

p q
, and  

i i

ij j i
K 

p q

p q

1

jiL
 . Obviously, 

1
ij

ji

K
L

  and 1ii iiL K  . 

  The Laspeyres and Paasche index numbers are usually considered as two alternative 

measures of the unknown “true” index number ijP  which can be seen as an aggregation of 

the elementary price ratios /i j
r rp p  or, alternatively, as

 
a ratio of aggregate price levels, 

i.e. / ,ij i jP P P  where iP  and jP  are “true” aggregate price levels at the ith and jth points of 

observation.  The price level ratio, always respects, by construction, the “base reversal” test, 

that is 1/ ,ij jiP P and the “circularity” test, that is .it tj ijP P P   By contrast, in the general case 

where the elementary price ratios and the relative quantity weights change, the Laspeyres 

and Paasche indices fail to be “base-“ and “chain-consistent”, that is 1/ ,ij ji ijL L K 

 
it tj ijL L L   and it tj ijK K K  . Even more unacceptable is well-known failure of chained 

indexes to return on the previous levels if all elementary prices go back to their older levels 

(the so-called “drift effect”): 1.it ti iiL L L  
 
and 1.it ti iiK K K  

 
These failures make the two 

index number formulas, like all the other alternative formulas, unsuitable to represent a price 

index. Nevertheless, as we shall see below, they are useful for testing the existence of the 

“true” price index and constructing its consistent bounds.  

  The so-called LP-inequality condition is that ij ijL K  on the purchaser’s side 

( ij ijL K on the supplier’s side) is necessary and sufficient for the existence of a “true” price 

index number ijP  with a numerical value falling between the Laspeyres and Paasche indices.  

If this condition is not satisfied for all pairs of observation, then a correction of the data for 
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possible inefficiency can be devised and/or an alternative more general model using a wider 

or different set of variables could be considered.   

   If the LP-inequality condition is satisfied for all pairs of points of observation, let us 

define, in the purchaser’s case (following Afriat, 1981, 1984, p. 47, 2005, p. 167), 

 

...
min ...ij ik kl mj
kl m

M L L L            (minimum chained Laspeyres price index number) 

...
max ...ij ik kl mj
kl m

H K K K = 
1

jiM
 (maximum chained Paasche price index number) 

 
so that we have tighter bounds with ij ij ij ij ijL M P H K     for i j  and 

1.ii ii ii ii iiL M P H K      In the case of supplier, the inequality signs and the “min/max” 

problems are reversed. 

 If the LP-inequality condition is not satisfied for some or all pairs of points of 

observation, then we could “correct” the data for inefficiency.  Diagonal elements 1iiM    

and  1iiH    tell the inconsistency of the system. A critical efficiency parameter *e  can be 

found for correction of the L matrix.  For any element 1iiM  , let id  represent the number 

of nodes in the path ...i i , then  

1

( ) id
i iie M  

                                                    

If 1iiM  , let ie  take the value of 1  and then the critical efficiency parameter is determined 

as  

* mini ie e  

The adjusted Laspeyres matrix is obtained as  

* */L L e  
 

and the procedure goes on as before with *L in place of the original L.  

    Noting that Afriat’s optimized chained Laspeyres and Paasche indexes are - like any 

other chained index - intransitive since they exhibit the triangle inequalities it tj ijM M M
 

and ,it tj ijH H H  we build on these to derive transitive tight bounds by adopting the following 

procedure. Let us assume, without loss of generality, that all prices are normalized with an 

arbitrary aggregate price level, say for example 1,P and define the maximum and minimum 

price levels 
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1 1max  / = max  i t it t t it tP M M M H 


          for all i’s 

 
                                         1 1min / mini t it t t it tP H H H M  


             for all i’s 

 
The chain-consistent bounds satisfying all Fisher’s tests, are therefore obtained as  

 

/ij i jP P P
  

    and   /ij i jP P P
  

 

 
With 2N  , the index number problem of a consumer is solved with following bounds: 

 

12

21

1

1

K

L

 
  
 

P


    and  12

21

1

1

L

K

 
  
 

P


 

 
With 4N  , after having reordered the observations points conveniently, we might obtain 

 

12 12 23 12 23 34

21 23 23 34

32 21 32 34

43 32 21 43 32 43

1

1

1

1

K K K K K K

L K K K

L L L K

L L L L L L

 
 
 
 
 
 

P


   

and  

12 12 23 12 23 34
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Chain-consistent bounds of quantity indices can be obtained by using a similar procedure 

directly or implicitly by deflating the nominal total expenditure by means of the consistent 

bounds of the “true” price index numbers ijP


 and ijP


.   

In fact, the tight bounds P


 and P


 satisfy all Fisher’s tests, that is  

 

1iiP 


     and     1iiP 


              for every i             Identity test 

 

ijP 


 and ijP 


 if i jp p                              General mean of price relatives or 

                                                                                       proportionality test  
(linear homogeneity in price levels) 
from which the identity test can be  
derived as a special case with 1)    

 

1ij jiP P 
 

      and    1ij jiP P 
 

      for every   ,i j      Time-reversal test 
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ij jk ikP P P
  

   and    ij jk ikP P P
  

   for every , ,i j k    Chain (Circular-reversal) or transitivity test 

 

 *
ij ijP P
 

     and   *
ij ijP P
 

    where   *
t tp p    and   * /t tq q   for ,t i j  

                                                                                   Dimensional invariance test 

/ij ij i jP Q M M


   and   /ij ij i jP Q M M


 for every i,j , where Mt is nominal total expenditure 

           at t = i,j     (Weak) factor-reversal test1 
 
This is a remarkable result, since we have achieved the solution of the index-number problem 

following Samuelson and Swamy (1974), who have noted that it is possible to define 

economic index numbers that “do meet the spirit of all of Fisher’s criteria in the only case in 

which a single index number of the price of cost of living makes economic sense—namely, the 

(‘homothetic’) case of unitary income elasticities in which at all levels of living the calculated 

price change is the same” (p. 566). 

   The critical remarks made by Pfouts (1966) on the excess rigidity imposed on the 

“true” index number formula with all Fisher’s requirements do not apply here.  Since the 

matrix of bilateral ratios of price (or quantity) levels is singular by construction, that is its 

determinant is zero since the matrix rows are linearly dependent, this would require too 

much a restrictive condition for an index number formula to exist (see also von der Lippe, 

2007, pp. 76-77).  The foregoing matrices of bounds are not defined by imposing the same 

mathematical formula to each element, but are derived by finding directly numerical values.     

  As clarified also by the recent theoretical literature (see, in particular, van Veelen, 

2002, Quiggin and van Veelen, 2007, van Veelen and van der Weide, 2008, Crawford and 

Neary, 2008), the apparent contradiction between the impossibility theorem and the solution 

of the index-number problem reflects essentially the conflict between changing tastes that 

are consistent with traditional index number formulas and constant tastes that are implied in 

the construction of a “well-behaved” (homothetic) index. 

  The usual undesirable properties of chained index number formulas, in particular, the 

“drift” effect and intransitivity (see for example von der Lippe,  2001 for a critical position 

against the use of such indices) are not met with the algorithm proposed here, which 

                                                           
1   Samuelson and Swamy (1974, p. 575) have introduced the concept of the weak factor-reversal test, 
as opposed to the strong factor-reversal test: “we drop the strong requirement that the same formula 
should apply to q as to p. A man and wife should be properly matched; but that does not mean I 
should marry my identical twin!” 
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constructs chained numbers rather than chained formulas.  Moreover, other methods based 

on linking bilateral index numbers in a multilateral context, such as those based on a tree 

structure of chained bilateral comparisons according to the minimum distance in the weights 

(as, for example, the “minimum spanning tree” used by Hill, 1999, 2004), do not guarantee 

the minimum or maximum chaining paths needed to define the tightest bounds.    

  Most of the OECD countries currently use chained Laspeyres production volume 

indexes on a year-to-year basis in the national accounts statistics (see the survey by Schreyer, 

2004). These do not coincide with the tight bounds defined here. The proposed procedure 

could be used to find these bounds of alternative values of real GDP and its implicit deflator, 

standard of living and the cost-of-living index, and other aggregate economic variables. Point 

estimations, when needed, could also be constructed by taking the geometric averages of the 

tight bounds satisfying all Fisher’s tests, including transitivity.          

 

Summary and conclusion 

 

The index-number problem can be brought to a solution although at the cost of some 

compromises. It has been shown that, under easily testable conditions, the observed data 

(whichever behaviour has actually generated them) could be rationalized by a family of well-

behaved index numbers which respect all Fisher’s tests. This solution is achieved by 

maintaining a certain indeterminacy regarding the numerical values of “true” indexes, but it is 

restricted within tight bounds. However, in cases were a point estimation is altogether 

needed, a geometric average of these bounds can always be calculated respecting all Fisher’s 

tests.  
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